Evaluation and Extension of Maximum Entropy Models with Inequality Constraints
نویسندگان
چکیده
A maximum entropy (ME) model is usually estimated so that it conforms to equality constraints on feature expectations. However, the equality constraint is inappropriate for sparse and therefore unreliable features. This study explores an ME model with box-type inequality constraints, where the equality can be violated to reflect this unreliability. We evaluate the inequality ME model using text categorization datasets. We also propose an extension of the inequality ME model, which results in a natural integration with the Gaussian MAP estimation. Experimental results demonstrate the advantage of the inequality models and the proposed extension.
منابع مشابه
Determination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملModeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price
In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...
متن کاملMistake Bounds for Maximum Entropy Discrimination
We establish a mistake bound for an ensemble method for classification based on maximizing the entropy of voting weights subject to margin constraints. The bound is the same as a general bound proved for the Weighted Majority Algorithm, and similar to bounds for other variants of Winnow. We prove a more refined bound that leads to a nearly optimal algorithm for learning disjunctions, again, bas...
متن کاملParameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neura...
متن کاملA Note on the Bivariate Maximum Entropy Modeling
Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1 and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...
متن کامل